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Abstract. The Dirac equation in the presence of the classical field of a standing wave is 
investigated for an electron moving parallel to the beam direction. The main differences 
from the spinless case are: if the two plane waves which produce the standing wave have 
opposite polarisation, the energy bands for the two spin components are different; for the 
spin-averaged transmission coefficient this is of relevance only for very low energies; if the 
waves have equal polarisation, the momentum bands as found in the spinless case are 
completely absent. 

1. Introduction 

This paper continues an earlier one on the relativistic quantum mechanics of spinless 
particles in the classical field of a standing wave (Becker er a1 1979b, to be referred 
to as I). We shall here consider spin effects on the basis of the Dirac equation. The 
investigation is motivated by the fact that one can not be at all sure that the pattern of 
the energy bands which has been discussed at length in I is not considerably altered by 
the electron spin. This is because both the appearance of energy bands and the 
consequences of spin are genuine quantum effects, both governed by the parameter 
fiw, w being the frequency of the standing wave. Unfortunately the mathematical 
structure becomes much more involved if the spin is taken into account. Whereas we 
could use the elaborate theory of Mathieu's equation in the scalar case, we have to deal 
here with a first-order system of periodic differential equations, for which few exact 
results are known, especially for the required large parameter values involved. Apart 
from some general and qualitative statements, all results to be presented below will 
therefore be based on approximate solutions which are mostly obtained by numerical 
methods. Since the physical consequences are entirely different for equal and opposite 
polarisation, we shall treat the two cases separately. 

2. Opposite polarisation 

The Dirac equation for a particle in an external field A reads 

[ ~ " ( i a " + ~ A ~ ) - - ~ l ~ ( x ) = O  (1) 
(see I for the notation). With the vector potential of (1,equation (6)) the dependence on 
x, y may be split off as in I, equation (8) and we shall, as in I, equation (9), consider an 
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electron with canonical momentum along the z axis. The potential term in equation (1) 
can be written in the form 

E Y ~ A ”  = -2ieap2ul cos wzS(20xO). 

Here we have used Dirac’s p and u matrices 

k = 1 , 2 , 3  0 k 
Y = p 3 ,  y = P3PlUk, 

and the matrix for a spin rotation 

S ( a )  = cos a / 2  - iu3 sin a /2 .  

Due to the invariance of the vector potential under the combined time translation and 
rotation around the z axis (I, equation (7)) we can separate the time dependence; things 
are only slightly more complicated than in the scalar case. With the ansatz 

( 5 )  

we obtain a one-dimensional system of differential equations. In terms of the dimen- 
sionless quantities 

4b0, z )  = exp (-ipoxdS(-wxo)g(z) 

5 = W Z ,  

[d/d( + ip1/2 +U&K - iplpO)/w - 2 1 ~ 2  cos 518 = 0. 

1 = EcY/W, 

(cf I, equations (11) and (13)) we have 

(6) 

(7) 

(8) 

Iterating with the ansatz 

g(5) = ptu3[d/d(+ip1/2-(+3(~2K + ~ P I P O ) / W  -2152 cos 51(1 - i ~ d f ( t )  

we obtain the second-order system 

[d2/dt2 + A, - 212 cos 25 + 2ilu2p3(cos 5 - ip3sin e)] f(5) = 0 

A, = ( l / W 2 ) [ ( p o - W ( + j / 2 ) 2 - K 2 ] - 2 1 2 .  (9) 

where we have 

Comparison with I, equation (12) shows that the two spin components u3 = *1 have 
different energies and remain coupled via the last term in equation (8). 

gl = hl +ikl ,  g2 = i(h3 + ik3), g3 = i(h4 + ik4), g4= hZ+ik2. (10) 

Then we obtain two identical, real systems for the spinors h and k, which read 

Another useful form is obtained from equation ( 6 ) ,  if we put 

dh/d5 = A ( 0 h  (11) 
where 

A ( [ )  =$iulp2-pl(ulK/W +iu2p0/0 - 2 b 3  cos E ) .  
The components of the current, 

i” = & ”4, 
read in terms of h 

3 j o  = h’h, j =-h’pluzh 

i’ f ij2 = -ihip1(p3 r a3)h exp(riwxo) 
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and current conservation 

reduces to 

dj3/d& = 0. (15) 

As in the scalar case there are solutions of the Floquet type, 

and the behaviour of the characteristic exponents is important. Some theorems, which 
are useful in this context, have been proved in a previous paper (Becker et al 1979a, to 
be referred to as 11). Since the matrix (8) has the properties 

theorem 2 of I1 is applicable. Thus the four characteristic exponents can be grouped in 
complex conjugate pairs and in pairs of opposite sign. The sum of the exponents has to 
vanish, since Tr A = 0. Therefore the set of characteristic exponents is ( 7 1 ,  -71 ,  72, 

T ~ ) ,  with the three possibilities: (1) both numbers 7 1 ,  72 are real; (2) one of the numbers 
is real, one imaginary; (3) both numbers are imaginary. As in the scalar case we must 
have j 3  = 0 for any solution belonging to imaginary characteristic exponents and the 
charge density io increases exponentially in this case. Therefore these solutions have no 
physical meaning. Thus the three possibilities given above define (1) allowed, (2) simply 
and (3) doubly forbidden domains in the space of parameters (I, p ~ / w )  for given mass K.  

This indicates that the propagation behaviour of the two spin components in the 
presence of a standing wave is different: none, one or both of them may be transmitted 
or reflected. 

Figure 1, which is based on a numerical solution of equation ( l l ) ,  gives an 
impression of what happens in general. The values of the parameters are unrealistic and 
have been chosen for numerical convenience. The hatched areas are simply forbidden. 
There are two increasing and two bounded solutions corresponding to a pair of complex 

2 

I 

1 

100.49 100.57 
Po I w  

Figure 1. The stability chart of the system (11) for K / W  = 100. The hatched domains are 
simply forbidden. The only doubly forbidden domain which occurs in the figure is given by 
the’intersection of the hatched areas with the apparent line n = 28. The indices of the 
characteristic curves are given at the abscissa. The disconnected curves correspond to odd 
integer values. There should be an additional disconnected curve with label n = 29which is 
not depicted since it almost coincides with the band n = 6. 
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and a pair of real indices. Doubly forbidden domains are given by the intersection of the 
hatched areas with the apparent lines labelled n = 28 and n = 30. These lines actually 
represent extended simply forbidden domains which in the given scale shrink to lines. 
The labels n at the abscissa are the values of the characteristic index r in agreement 
with equation (17) below. The lower values (n = 0 , 2 , 4  . . .) correspond to the negative 
sign in (18), the upper values ( n  = 28, 30) to the positive sign. 

If 1 is not too large, we can obtain the curves T (1, po/o) = constant analytically by 
expanding the periodic function h in equation (16) in a Fourier series, inserting into 
equation (11) and evaluating the infinite determinant of the resulting system of 
equations for the Fourier coefficients to lowest non-trivial order in 1 (which is 1’). In this 
way we obtain 

(17) 

wB, = [ ( ~ O * W / ~ ) ~ - K ~ ] ~ ’ ~  (18) 

(this result is also valid for equal polarisation, if the sign of 1’ is changed and p o  is 
replaced by p z ) .  From such a perturbative calculation T results always as a real quantity. 
Since the eigenvalues exp i r r  show continuity properties, T can assume complex values 
only via a point, where T is an integer. In fact, solving r(1, p o / w )  = n, p o / w  = f , , ( l )  may 
yield two different curves f , , ( l ) ,  which then confine a region with non-real r. Figure 1 
shows that this happens for even, but not for odd, integer n (the disconnected lines are 
the graphs for r = 2m + 1). This fact has thus far been established only by numerical 
computation, where very narrow bands may be overlooked. The approximate investi- 
gation presented below indicates that this should hold also’ for the system (1 1). 

Since the laser wavelength is large compared with the Compton wavelength of the 
particle, the energy splitting due to the spin is small. If we neglect the splitting term in 
equation (9) and write F = (1 + ial)f,  we obtain from equation (8) 

(19) 

This is Mathieu’s equation (I, equation (12)) supplemented by a term which describes a 
coupling of the two spin components. All possible choices p3 = k l ,  u3 = *1 are 
equivalent upon 6 -, 5 + r and/or 5 + -5, so that we shall consider only p3 = u3 = 1. 
With 

r&/2  = B ,  - I2 /B ,  + 0(14) 

where 

[d2/dt2 + A-212 cos 25 + 2ilu3p3(cos 5 - i p g  sin 5)]F = 0. 

G(5) = F ( 5 )  exp(-2l sin 5) 
we obtain a more convenient equation, which reads 

G“+41  cos5G’+(1+212+2il  cos[)G=O. 

With a Floquet ansatz (16) we obtain a three-term recursion formula for the Fourier 
coefficients of the periodic part. The relation can be resolved in terms of continued 
fractions (Meixner and Schafke 1954). The characteristic exponent is determined by a 
complicated equation, which we shall not write down here. With the exception of even 
integer values of r a solution may be obtained by successive approximations. We obtain 

~ = - = 2 1 ~  5T8 - 4 9 h 6  +4251T4 + 1159T2- 30844 
( ~ ~ - 1 ) ~ ( r ~ - 4 ) ~ ( ~ ~ - 1 6 )  

+ . . . (7 # 1) + 218 
~ ’ - 1 3  2 

T 

4 (7’- 1)(r2-4)  
2 A=$+21  ( r  = 1). 
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For large T the leading terms in T agree with those obtained from the corresponding 
expansions of equation (12) in I, if we identify ~ / 2  as characteristic exponent according 
to the fact that the period of equation (12) in I is just half the period of equation (19). 
For even integer values of T there are two solutions of the equation for A(r,  I ) ,  which 
branch at A = r2/4, 1 = 0 and confine a region with complex T. These solutions cannot 
be obtained by successive approximations. 

Thus, although both the exact equations (11) and the approximative ones (19) for 
the spin-4 particle exhibit a period of 2 ~ ,  whereas the equation (12) in I for the scalar 
particle has the period T, the qualitative picture of the allowed and forbidden domains is 
the same. For equation (19) the reason is that the forbidden domains start only at even 
integer values of T. This latter fact may be understood also directly from equation (19): 
for small values of 1 we can neglect the third term; the resulting equation (for 
p3 = m3 = 1) can be solved exactly in terms of Bessel functions 

f--z,{(W’’ exp[-(i/2)(6 + d 2 ) I L  (Y = (4A)”’, 

which are bounded for large 151 for A > 0, so that there are no forbidden domains; thus 
the latter are due entirely to the term 1’ cos 25, as in the spinless case. 

It has been pointed out in I that the energy bands are experimentally best observed 
near the classical threshold for transmission of particles. Hence the question arises, 
whether and how the transmission coefficient as plotted in I (figure 1) is modified due to 
the presence of spin. According to I, we need a very large value of 1’ for not-too-low 
values of the kinetic energy in order to reach the relevant region. Since we have found 
that the exact system of equations for spin-4 particles exhibits qualitatively the same 
pattern of allowed and forbidden domains as for spin-0, we can then (i.e. for 1’>>1) 
neglect the spin-coupling term in equation (8). Diagonalising c3 we obtain two Mathieu 
equations with different parameters A, i.e. 

Au = A* = ( I / W ’ ) [ ( p o  f W/2)2-K2]-212. 

If we then compute the transmission coefficient with the Klein-Gordon theory as in I, 
we observe that the parameter on the abcissa of I (figure l ) ,  has to be replaced according 
to 

p = ( l / W ) ( p ~ - K 2 ) ” 2 ~ ( p 2 * p o / W  +$)l”. 

For the uppermost graph of I (figure 1) (which is the most realistic one from the 
experimental standpoint) these mutual shifts of the scale are still small: the transmission 
coefficients for both spin components nearly coincide and the spin averaged coefficient 
is the same as in the spinless case. In the other two graphs neither is the shift small, nor 
can the neglection of the spin coupling be trusted. The spin effects will play a major role 
in this region, which is, however, experimentally hardly accessible because of the low 
kinetic energies involved. 

3. Equal polarisation 

With the vector potential of I, equation (50) the potential term in the Llirac equation (1) 
becomes 

(20) E - ~ ~ A ”  = -2irapzm1 cos wxOS(-2wz). 
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For a particle with canonical momentum along the z axis we can split off the 
dependence on z ,  putting 

~ ( x o ,  z )  = S ( w z ) g ( v )  exp(i ZP,) (21) 

where q = oxo+ 7r/2 in accordance with I, equation (53). Then we obtain the system 

dgldq = A(rl)g(q) (22) 

with 

It is observed that the matrix A is antihermitian: 

A + ( d  = -A(q ) .  (24) 
Therefore theorem 1 of I1 applies and we can conclude that the system (22) has only 
stable solutions without any band structure. The same conclusion can be drawn directly 
from current conservation, which amounts to 

djo/dq = 0 

if one observes that io is positive, so that there can be no increasing solutions. In this 
respect the situation is completely different from the scalar theory, where we had found 
increasing solutions with j o  = 0, indicating copious pair production from the vacuum. 
There may be pair production also in the Dirac theory; Fermi statistics, however, 
excludes an exponential increase in time. The situation resembles the corresponding 
one for a homogeneous, time-dependent electric field, where the probability for the 
presence of a pair oscillates in time for spin-$ and increases exponentially for scalar 
particles (Narozhnyi and Nikishov 1973). 

4. Conclusions 

These are the main differences between the results for spin-0 and spin-4: 
(1) For opposite polarisation, the simple pattern of allowed and forbidden domains 

in the space of the two parameters, field strength and energy, is replaced by two such 
patterns corresponding to the two different spin orientations which overlap and form 
allowed, simply and doubly forbidden domains. It is remarkable that both patterns 
follow essentially the stability chart of Mathieu’s equation. The ‘grating’ in the spin-k 
case has double wavelength compared with the spinless case; hence one expects at first 
glance that the forbidden domains are more densely spaced. We have argued that this is 
effectively not the case. As to the experimental possibility of observing the energy 
bands by detecting transmission or reflection of an electron beam from the standing 
wave, spin does not play a major role except for very low kinetic energies. In the latter 
case, however, the spin-averaged transmission coefficient may be completely different 
from that for spin-0. 

(2) For equal polarisation the momentum bands discussed in I disappear 
completely and we have everywhere just bounded solutions. The wavefunction within 
the momentum bands describes a situation with zero charge density and increases in 
space exponentially, thus allowing for copious pair production from the vacuum, which 
is forbidden in the spinor case due to Fermi statistics. 
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